Правила привязки стен к осям


Правила привязки конструктивных элементов к разбивочным осям — favorit-tk

Правила привязки конструктивных элементов к разбивочным осям
Строительство здания начинают с закрепления на местности координационных (разбивочных) осей. Такие оси на чертежах обозначают буквами и цифрами. Расположение конструктивного элемента относительно координационных осей здания называют его привязкой.
Привязка должна быть кратна М или М-2.(модуль). Допускается совмещение внутренней грани стены с модульной разбивочной осью в целях унификации элементов перекрытий («нулевая привязка»).

В зданиях с кирпичными стенами координационные оси наружных стен смещены от внутренней грани (внутрь) на 100 мм. Оси внутренних стен смещены вовнутрь на 120 мм или же совпадают с геометрической осью внутренней стены. В зданиях с колоннами координационные оси крайних и средних рядов колонн совмещены с их геометрическим центром.
Как указывалось, конструктивные элементы расчленяют внутреннее пространство здания на объемно-планировочные элементы (помещения). Каждый такой элемент характеризуется: пролетом, т.е. расстоянием между координационными осями продольных стен или продольных рядов колонн; шагом, т.е. расстоянием между координационными осями поперечных стен или поперечных рядов колонн; высотой этажа, т.е. расстоянием между уровнями смежных полов многоэтажного здания.
Объемно – планировочные элементы в зданиях с колоннами характеризуются сеткой колонн, т.е. расстоянием между колоннами в продольном и поперечном направлениях, а также высотой этажа.
Правила привязки конструкций здания к координационным осям предусматривают сокращение числа типов сборных конструкций, что способствует ограничению размеров пролета, шага и высоты этажей.
Пространственная система 1 - координационная плоскость чистого пола;
модульных координатных плоскостей. 2 - подвесной потолок
Координационный размер конструктивного элемента принимают равным основному координационному размеру здания (сооружения), если расстояние между двумя координационными осями здания (сооружения) полностью заполняют этим элементом
Координационный размер конструктивного элемента принимают равным части основного координационного размера здания (сооружения), если несколько конструктивных элементов заполняют расстояние между двумя координационными осями здания (сооружения)
Координационный размер конструктивного элемента может быть больше основного координационного размера здания (сооружения), если конструктивный элемент выходит за пределы основного координационного размера здания (сооружения)
Вместо указанных на чертеже координационных размеров L (длина) могут быть соответственно приняты B, b (ширина) или Н, h{высота).

favorit-tk.ru

Основные правила привязки колонн и стен к координационным осям

Проектное расстояние между координационными осями здания, или условный размер конструктивного элемента его, включающий соответствующие части швов и зазоров, называется номинальным модульным размером. Кроме номинального различают конструктивные и натурные размеры (15.5). Конструктивным называют проектный размер конструктивных элементов, строительных изделий и оборудования, отличающийся от номинального на величину нормированного зазора или шва (5, 10, 20 мм и т.д.). Натурный размер — фактический размер детали, конструктивного элемента, оборудования, отличающийся от проектного на величину, находящуюся в пределах допуска.

 

8. Единая модульная система (ЕМС) в индустриальном строительстве. Понятие ЕМС,
укрупненные и дробные модули. Особенности использования ЕМС в индустриальном жилищном строительстве.

Унификация, типизация и стандартизация строительных конструкций существуют в рамках Единой модульной системы в строительстве. Массовое изготовление конструкций и деталей из сборного железобетона позволило осуществить коренные преобразования в строительном производстве, сократить сроки строительства и превратить его в значительной степени в механизированный процесс монтажа зданий и сооружений из крупноразмерных сборных элементов заводского изготовления.

Важное техническое и экономическое значение при массовом производстве сборных элементов имеет известная однотипность (ограниченная номенклатура) выпускаемых изделий. Это достигается их унификацией, типизацией и стандартизацией.

Совокупность правил, увязывающих (на базе основного модуля) размеры объемно-планировочных и конструктивных элементов здания с размерами сборных конструкций, называют Единой модульной системой (ЕМС). За основной модуль принимают 100 мм. Размеры зданий и сборных конструкций устанавливают кратными 100 мм. При назначении длины, ширины конструкций принимают укрупненные модули (6000, 3000, 1500, 1200, 600, 300, 200 мм), при небольших размерах конструкции - дробные модули (50, 20, 10 мм).

Для учета зазоров и швов между сборными конструкциями Единая модульная система предусматривает несколько категорий модульных размеров:

· номинальные, определяющие расстояние между модульными разбивочными осями здания или условные размеры конструкций с учетом соответствующей части зазоров и швов;

· конструктивные, определяющие проектные размеры сборных элементов, отличающиеся от номинальных на величину нормированных (5, 10, 15, 20 мм) зазоров и швов;

· натуральные, т.е. фактические размеры изготовленной конструкции или фактические расстояния между разбивочными осями построенного здания.

Расположение конструктивных элементов здания по отношению к модульным разбивочным осям (их обозначают на чертежах буквами или цифрами) называют в ЕМС привязкой. В зданиях с несущими стенами модульные разбивочные оси проходят по центру внутренних стен, а в наружных стенах — от внутренней грани стены на расстоянии, кратном 100 и 50 мм.

В каркасных зданиях в средних рядах разбивочные оси проходят по центру колонн. В крайних рядах разбивочные оси могут проходить или по центру колонн (осевая привязка) или по грани конструктивного элемента (нулевая привязка).

 

9. Унификация, типизация в проектировании и строительстве. Методы и методики
типизации КПЗ.

Унификация, т. е. предельное ограничение типоразмеров сборных конструкций и деталей, упрощает технологию заводского изготовления и ускоряет производство монтажных работ. Унификация строительных конструкций основывается на уменьшении разнообразия размеров объемно-планировочных параметров здания (пролетов, шагов и высот этажей) и на унификации расчетных нагрузок, действующих на конструкции. Унифицированные конструкции используются в зданиях различного назначения. Наиболее совершенные из них по архитектурным, техническим и экономическим требованиям и пригодные для многократного использования в строительстве утверждаются в качестве типовых.

Типизация представляет собой разработку и отбор наиболее рациональных экономических решений отдельных конструкций, пригодных для многократного использования в строительстве. Таким образом, типизация не только позволяет сократить число типоразмеров строительных конструкций, типов зданий, но и значительно упрощает и удешевляет строительство. Типизация геометрических параметров основана на модульной координации размеров в строительстве: их кратности единому модулю - М A00 мм), но гораздо чаще - укрепленным модулям - ЗМ C00 мм), 6М F00 мм), 12М, 15М, 30М, 60М.

Метод "открытой системы типизации" основан на принципе "детского конструктора" и подчинен только системе укрупненных модулированных основных конструктивных размеров зданий - высот этажей, пролетов и шагов несущих конструкций. Во взаимосвязи с этими основными габаритными размерами проектируют сборные изделия и разнообразные по функциональному назначению и объемно-планировочному решению здания.

Метод "закрытой" системы типизации построен принципиально иначе. Он базируется на разрезке запроектированного в модульной системе здания на сборные элементы.

Методы типизации в крупнопанельном домостроении. На первом этапе крупнопанельного домостроения объектом типизации был типовой жилой дом. Это привело к монотонности, к невозможности достичь разнообразия в архитектуре застройки. Следующим методом стал блок-секционный, в котором законченным объектом типизации являлись блок-секции, из набора которых создавалась объемно-пространственная композиция застройки. Для разнообразия композиционных решений разработаны блок-секции широтные и меридиональные, прямые и угловые, со сдвижкой в плане, поворотные вставки и т. п. Этот метод получил наибольшее распространение в массовом строительстве в нашей стране.

Поиски разнообразия в индивидуальном строительстве привели к разработке блок-квартирного метода, в котором объектом типизации являлась квартира. Однако он не нашел практического применения в связи с нестабильностью заводского производства деталей и необходимостью в каждом случае разрабатывать, по существу, индивидуальные проекты панельных домов.

Новым методом явился разработанный в Моспроекте № 1 метод компоновочных объемно-планировочных элементов (КОПЭ), в котором объектом типизации стали фрагменты (конструктивно-планировочные ячейки) жилой секции высотой от фундамента до крыши, способные по определенным правилам блокироваться с другими аналогичными фрагментами системы, создавая тем самым различные по композиционным, демографическим и другим условиям объемно-планировочные решения жилых домов высотой 18... 22 этажа

Достоинством метода является высокая степень повторяемости типовых индустриальных изделий благодаря жесткой унификации планировочных параметров в различных фрагментах и в таких элементах здания, как лестнично-лифтовые узлы, конструкции нулевых циклов, чердака и т. п.

Метод предполагает открытую систему типизации фасадных панелей, создавая тем самым дополнительные средства для разнообразия архитектуры застройки.

 

10. Характеристика блок-секционного и блок-квартирного методов типового проектирования КПЗ. Стандартизация, унификация.

Методы типизации в крупнопанельном домостроении. На первом этапе крупнопанельного домостроения объектом типизации был типовой жилой дом. Это привело к монотонности, к невозможности достичь разнообразия в архитектуре застройки. Следующим методом стал блок-секционный, в котором законченным объектом типизации являлись блок-секции, из набора которых создавалась объемно-пространственная композиция застройки. Для разнообразия композиционных решений разработаны блок-секции широтные и меридиональные, прямые и угловые, со сдвижкой в плане, поворотные вставки и т. п. Этот метод получил наибольшее распространение в массовом строительстве в нашей стране.

 

Поиски разнообразия в индивидуальном строительстве привели к разработке блок-квартирного метода, в котором объектом типизации являлась квартира. Однако он не нашел практического применения в связи с нестабильностью заводского производства деталей и необходимостью в каждом случае разрабатывать, по существу, индивидуальные проекты панельных домов.

Унификация, т. е. предельное ограничение типоразмеров сборных конструкций и деталей, упрощает технологию заводского изготовления и ускоряет производство монтажных работ. Унификация строительных конструкций основывается на уменьшении разнообразия размеров объемно-планировочных параметров здания (пролетов, шагов и высот этажей) и на унификации расчетных нагрузок, действующих на конструкции. Унифицированные конструкции используются в зданиях различного назначения. Наиболее совершенные из них по архитектурным, техническим и экономическим требованиям и пригодные для многократного использования в строительстве утверждаются в качестве типовых.

 

Стандартизация является завершающим этапом унификации и типизации строительных конструкций и изделий. Типовые конструкции и детали, прошедшие проверку в эксплуатации и получившие широкое распространение, утверждаются в качестве стандартов (образцов). Размеры, форма и качество стандартизированных конструкций устанавливаются ГОСТами.

 

11.
Понятие «строительная система» и «конструктивная схема». Их классификация и
использование в жилищном строительстве.

Схема классификации строительных систем зданий

Строительные системы

Понятие строительная система - является комплексной характеристикой конструктивного решения здания по признакам материала и технологии возведения его несущих конструкций.2 Различают четыре группы конструкционных материалов - камень (включая кирпич), бетон, металл и дерево и два основных технологических метода возведения - традиционный и индустриальный. Например, для кирпичных зданий традицион-на технология ручной кладки несущих стен, а для деревянных - применение рубленных бревенчатых стен. Наиболее распространенным является использование одной строительной системы при возведении здания. Такие строительные системы называют основными.




infopedia.su

2.Модульная система. Правила привязки стен к разбивочным осям

Унификация обеспечивает приведение к единообразию и сокращению числа основных объемно планировочных размеров зданий (высот этажей, проемов перекрытий) и как следствие единообразию размеров и форм конструктивных элементов и заводского изготовления. Унификация позволяет применять однотипные изделия в зданиях различного назначения. Она обеспечивает массовость и однотипность конструктивных элементов, что способствует рентабельности и заводскому изготовлению. Возможность сокращения числа типов несущих конструкций достигается путем унификации расчетных конструкций. Основой для унификации в геометрических размерах изделий является Единая модульная система в строительстве (ЕМС) - совокупность правил, позволяющих увязать объемно-планировочные размеры зданий с размерами конструктивных элементов на основе кратности единой величине - модулей. В большинстве европейских стран в качестве единого основного модуля "М" принята величина 100 мм. В крупнопанельных зданиях разбивочные оси внутренних несущих стен совпадают с их геометрической осью, оси наружных стен из бетонных однослойных и двухслойных панелей размещают на расстоянии 80 мм. трехслойных - 110 мм. а из панелей, изготовленных не из бетонных материалов. - 50 мм от внутренней грани стены. В зданиях со стенами из кирпича и мелких блоков привязка внутренней плоскости наружных стен к модульным осям (условная ось. указывающая положение здания) составляет 100 мм. а в плоскости внутренних стен - 120 мм.В каркасных зданиях разбивочные оси внутренних колонн размещают по их геометрической оси. Привязка крайних рядов колонн в целях максимальной унификации крайних элементов с рядовыми принимается в соответствии с особенностями конструктивной системы здания и осуществляется одним из следующих способов: а) Внутренняя грань колонны смещается от модульной разбивочной оси на половину ширины внутренней колонны. При одинаковом сечении наружных и внутренних колонн геометрической и модульной разбивочной оси крайних колонн, совмещаются: б) Внешние грани колонн совмещают с модульными разбивочными осями, (нулевая привязка)Высота этажа в жилых зданиях принимается равной расстоянию между отметками чистого пола смежных этажей. Высота этажа жилого здания для строительства во II и III климатических районах принимается равной - 2.8 м. а в I и IV - 3 м.

3. Конструктивные элементы здания

конструктивные элементы - части здания, имеющие определенное назначение и определяющие структуру здания (фундамент, стены, отдельные опоры, перекрытия, лестницы, перегородки, полы, крыши, окна, двери и др.): По назначению все конструктивные элементы подразделяют на несущие (фундаменты, опоры, стены, перекрытия) и ограждающие (внутренние стены, покрытия, полы, перегородки, двери), а некоторые из них выполняют обе функции. Все нагрузки, возникающие в здании, воспринимают несущие элементы, а ограждающие отделяют помещения здания друг от друга и от внешнего пространства. Фундаменты - подземные части здания, воспринимающие всю нагрузку от здания и внешних сил (ветер, снег и т. д.). передающие и распределяющие давление на грунт. Стены -вертикальные конструкции, выполняющие ограждающую, а иногда и несущую функцию, поэтому их делят на несущие, самонесущие и ненесущие (навесные). Несущие стены передают на фундамент нагрузку от перекрытий и крыши вместе с собственным весом, самонесущие передают лишь собственный вес и являются ограждающими конструкциями, ненесущие опираются не на фундамент, а на колонны или перекрытия и являются только ограждающими конструкциями. Отдельные опоры (колонны, стойки, столбы) являются вертикальными несущими элементами, воспринимают нагрузку от перекрытий или других конструктивных элементов зданий (навесных стен) и передают эту нагрузку вместе с собственным весом на фундамент. Перекрытия - горизонтальные ограждения, делящие внутреннее пространство на этажи.- являются несущими, поскольку воспринимают полезную нагрузку и передают ее на стены и опоры. Надземные этажи разделяются междуэтажными перекрытиями: подвал от первого этажа-надподвальным. верхний этаж от чердака - чердачным. При отсутствии чердака верхнее перекрытие называется совмещенным покрытием. Крыша - конструктивный элемент, защищающий здание от атмосферных осадков. Она состоит из водонепроницаемой оболочки (кровли) и поддерживающих ее несущих конструкций. Лестница - конструктивный элемент для сообщения между этажами. Внутренние лестницы ограждают несгораемыми стенами, в результате чего образуется помещение, называемое лестничной клеткой. Перегородки -вертикально ограждающие конструкции, разделяющие помещения. Перегородки опираются на перекрытие, а внутренние стены - на фундамент. Двери заполняют дверным блоком, окна -оконным. Основные несущие конструкции здания, в том числе фундаменты, стены, отдельные опоры и перекрытия, воспринимающие и передающие все нагрузки, включаются в совместную работу, составляя единую пространственную конструктивную систему) - несущий остов здания.

studfile.net

Привязка конструктивных элементов к координационным осям

Расположение и взаимосвязь конструктивных элементов следует координировать на основе модульной пространственной координационной системы путем их привязки к координационным осям.

Модульная пространственная координационная система и соответствующие модульные сетки с членениями, кратными определенному укрупненному модулю, должны быть, как правило, непрерывными для всего проектируемого здания.

Прерывную модульную пространственную координационную систему с парными координационными осями и вставками между ними, имеющими размер С, кратный меньшему модулю, допускается применять для зданий с несущими стенами в следующих случаях:

· в местах устройства деформационных швов;

· при толщине внутренних стен 300 мм и более, особенно при наличии в них вентиляционных каналов; в этом случае парные координационные оси проходят в пределах толщины стены с таким расчетом, чтобы обеспечить необходимую площадь опирания унифицированных модульных элементов перекрытий;

· при обеспечении прерывной системой модульных координат более полной унификации типоразмеров индустриальных изделий, например, при панелях наружных и внутренних продольных стен, вставляемых между гранями поперечных стен и перекрытий.

 

Рис. 1.9.: Расположение координационных осей в плане зданий с несущими стенами: а - непрерывная система с совмещением координационных осей с осями несущих стен; б - прерывная система с парными координационными осями и вставками между ними; В – прерывная система при парных координационных осях, проходящих в пределах толщины стен

 

Привязку конструктивных элементов определяют расстоянием от координационной оси до координационной плоскости элемента или до геометрической оси его сечения.

Привязку несущих стен и колонн к координационным осям осуществляют по сечениям, расположенным на уровне опирания на них верхнего перекрытия или покрытия.

Конструктивная плоскость (грань) элемента в зависимости от особенностей его примыкания к другим элементам может отстоять от координационной плоскости на установленный размер или совпадать с ней.

Привязку несущих стен к координационным осям принимают в зависимости от их конструкции и расположения в здании.

Геометрическая ось внутренних несущих стен должна совмещаться с координационной осью; асимметричное расположение стены по отношению к координационной оси допускается в случаях, когда это целесообразно для массового применения унифицированных строительных изделий - например, элементов лестниц и перекрытий.

Внутренняя координационная плоскость наружных несущих стен должна смещаться внутрь здания на расстояние f от координационной оси, равное половине координационного размера толщины параллельной внутренней несущей стены d0 вн/2 или кратное М, 1/2М или 1/5М. При опирании плит перекрытий на всю толщину несущей стены допускается совмещение наружной координационной плоскости стен с координационной осью.

При стенах из немодульного кирпича и камня допускается корректировать размер привязки в целях применения типоразмеров плит перекрытий, элементов лестниц, окон, дверей и других элементов, применяемых при иных конструктивных системах зданий и устанавливаемых в соответствии с модульной системой.

Внутренняя координационная плоскость наружных самонесущих и навесных стен должна совмещаться с координационной осью или смещаться на размер в с учетом привязки несущих конструкций в плане и особенностей примыкания стен к вертикальным несущим конструкциям или перекрытиям.

 

Рис. 1.10. Привязка стен к координационным осям: а - внутренних несущих стен; б-г - наружных несущих стен; д, е - наружных самонесущих и навесных стен

 

 

Привязка колонн к координационным осям в каркасных зданиях должна приниматься в зависимости от их расположения в здании.

Колонны средних рядов следует располагать так, чтобы геометрические оси их сечений совмещались с координационными осями. Допускаются другие привязки колонн в местах деформационных швов, перепада высот и в торцах зданий, а также в отдельных случаях, обусловленных унификацией элементов перекрытий в зданиях с различными конструкциями опор.

Привязку крайних рядов колонн каркасных зданий к крайним координационным осям принимают с учетом унификации крайних элементов конструкций (ригелей, панелей стен, плит перекрытий и покрытий) с рядовыми элементами; при этом, в зависимости от типа и конструктивной системы здания, привязку следует осуществлять одним из следующих способов:

1) внутреннюю координационную плоскость колонн смещают от координационных осей внутрь здания на расстояние, равное половине координационного размера ширины колонны средних рядов d0 ср/2;

2) геометрическую ось колонн совмещают с координационной осью;

3) внешнюю координационную плоскость колонн совмещают с координационной осью.

Внешнюю координационную плоскость колонн допускается смещать от координационных осей наружу на расстояние f, кратное модулю ЗМ, а при необходимости М или 1/2М.

В торцах зданий допускается смещение геометрических осей колонн внутрь здания на расстояние k, кратное модулю ЗМ, а при необходимости М или 1/2М.

При привязке колонн крайних рядов к координационным осям, перпендикулярным к направлению этих рядов, следует совмещать геометрические оси колонн с указанными координационными осями; исключения возможны в отношении угловых колонн и колонн у торцов зданий и деформационных швов.

 

 


Рис. 1.11:Привязка колонн каркасных зданий к координационным осям: а - средних рядов; б-д - крайних рядов; е- в торцах зданий

 

В зданиях в местах перепада высот и деформационных швов, осуществляемых на парных или одинарных колоннах (или несущих стенах), привязываемых к двойным или одинарным координационным осям, следует руководствоваться следующими правилами: расстояние С между парными координационными осями должно быть кратным модулю ЗМ, а при необходимости М или 1/2М; привязка каждой из колонн к координационным осям должна приниматься в соответствии с предыдущими требованиями;

Рис. 1.12: Привязка стен (верхний ряд) и колонн (нижний ряд) к координационным осям в местах деформационных швов: а,б – на парных осях с парными стенами или колоннами; в – на парных осях с одинарными стенами или колоннами; г – на одинарной оси с парными стенами или колоннами; д – на одинарной оси

    Рис. 1.13: Модульная (координационная) высота этажа: 1 – координационная плоскость чистого пола; 2 – подвесной потолок.  

 

 




Дата добавления: 2016-09-26; просмотров: 9086;


Похожие статьи:

poznayka.org

Основные правила привязки несущих конструкций к модульным разбивочным осям.


Стр 1 из 7Следующая ⇒

1. Привязка – расположение СК относительно координационных осей.

2. Правила привязки несущих конструкций к разбивочным осям:

А) геометрические оси внутренних стен и колонн совмещаются с разбивочными осями (кроме стен лестничных клеток и стен с вентиляционными каналами).

Б) для наружных стен применяют:

- «нулевую» привязку – внутренняя грань стены или наружная грань колонны совпадает с разбивочной осью или

- как для внутренних стен - посередине или

-оговорённую особо

 

Технико-экономическая оценка конструктивных решений

 

1. Соответствие конструкции техническим, эксплуатационным, архитектурным требованиям

2. Стоимость

3. Расход материалов и масса на ед.измерения конструкции ( 1 м2 перекрытия, 1 м.п. карниза и др)

4. Индустриальность конструкции – возможность и трудоёмкость изготовления на заводе

5. Степень заводской готовности

6. Допустимые условиятранспортировки

7. Методы и трудоёмкость (чел-час) монтажа

8. Долговечность и огнестойкость конструкции

 

Раздел 3.2. Конструкции гражданских зданий

Уроки 11-12

Тема 3.2.1. Основные конструктивные элементы зданий

1. Конструкции могут быть:

А) несущими – воспринимают нагрузки и передают их через фундаменты на грунт

Б) ограждающими – изолируют пространство от внешней среды и делят на помещения

В) совмещающими эти функции – наружные и внутренние стены.

2. Конструкции зданий:фундамент, стены, опоры, перекрытия, ригели, перегородки, лестницы, крыши, окна, двери, цоколь, отмостка, эркер, лоджии, балконы.

3. Несущий остов здания(основа здания) конструкции: горизонтальные (перекрытия и покрытия) и вертикальные (стены, колонны).

 

4. Назначение остова - восприятие нагрузок

3. Конструктивная система – совокупность вертикальных и горизонтальных несущих конструкций здания, которые обеспечивают прочность, жёсткость и устойчивость.

 

Уроки 13-14

Тема 3.2.2. Несущий остов и конструктивные системы зданий

1. Бескаркасная

2. Каркасная

3. Комбинированная (с неполным каркасом)

 

Бескаркасная система (с несущими стенами)

1. Бескаркасная (с несущими стенами) - стены и перекрытия.

2. Виды бескаркасных систем:

А) с продольными несущими стенами плиты перекрытий лежат поперёк здания

Б) с поперечными плиты вдоль

В) перекрёстные несущиеплиты опираются по контуру.

 

 

 

Каркасная система

1. Несущие – колонны, ригели и перекрытия, стены – ограждающие.

2. Виды каркасных систем:

А) с поперечным расположением ригелей

Б) с продольным

В) с перекрёстным

Г) с безригельным каркасом: плиты опираются на капители колонн или на сами колонны

Комбинированная система (с неполным каркасом)

1. Нагрузку от перекрытий воспринимают внутренние колонны и наружные стены.

2. Типы:

А) с продольным расположением прогонов

Б) с поперечным

 

В) неполный каркас: наружные несущие стены + колонны (УКТП).

 

Уроки 15-18

Тема 3.2.3. Основания и фундаменты

Виды оснований зданий

 

1. Основание - грунта под фундаментом, воспринимает нагрузки от зданий - однородный, или из нескольких горных пород.

 

2. Грунт - горные породы. Группы:

А) скальныесплошные массивы или трещиноватые на большой глубине → редко служат основанием фундаментов → большая механическая прочность.

 

Б) крупнообломочные - более 50% горных пород больше 2 мм - щебень, галька, гравий - в связном состоянии → малосжимаемы и не пучинисты → хорошее основание.

 

В) песчаные - менее 50 % по весу частиц крупнее 2 мм → сыпучие, сухие не пластичны.

- виды: гравелистые, крупно-, средне-, мелкозернистые и пылеватые.

- могут быть сухими, влажными и водоносными.

- хорошее основание при равномерном слое без вкраплений других пород.

 

Г) глинистые - чешуйчатые из частиц в 20-100 раз меньше песчаных

- в воде пластичны; влажные: поры заполнены водой → зимой замерзают → пучение.

- по пластичности: – глина (> 30%глинистых частиц), суглинок ( >10%), супесь ( <10%),

- водонепроницаемы и их напластования являются водоупорами.

- в естественном состоянии не пригодны для оснований → на сухих возводят здания, предохраняя от вспучивания при замерзании.

 

Д) лёссовые: вид глинистых –тонкозернистые (много пыли), пор >50%.

- прочные в сухом состоянии и просадочные в замоченном → защита от влаги.

 

Е). насыпные – от засыпки оврагов, прудов, местных свалок, не однородны, неравномерная сжимаемость → применение для оснований ограничено.

 


Рекомендуемые страницы:

lektsia.com


Смотрите также